If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-14+3k+2k^2=0
a = 2; b = 3; c = -14;
Δ = b2-4ac
Δ = 32-4·2·(-14)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*2}=\frac{-14}{4} =-3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*2}=\frac{8}{4} =2 $
| 1133.54=3.14r2 | | 32=192-x | | 4y^2-28y-15=0 | | -14=2y+4 | | X+18=2.5x | | 5x²-4x=6 | | (2x-1/x+2)=4/5 | | 6(x-2)-1=3x+3(-4+x) | | x/96=3/4 | | 11=2(y-2)-5y | | 56+15k+k^2=0 | | 4y+4(-5)=28 | | 11=9(20d) | | 4y+4(-7)=28 | | x/8*1/2=6 | | 14y-1.8=24y+3.9 | | 5(4x-5)=2x-25 | | y+5/2=5 | | 2x/36=25/9 | | x•x=1 | | -3(x+2)+3x=13 | | -3(5p+3)-2(1-11p)=3(4+2p) | | 8/x-2=5/x+2 | | 4x-12+9x+17=161 | | 4x-12=9x=17+161 | | 8(2n+3)=7(8n+9)+6 | | 10(v+3)-2v=4(2v+1)-8 | | (25b-9)-8(3b+3)=-2 | | 4x-3+4x-13=180 | | 6x-(7-x)x=-1 | | 4n+16+3n+10=180 | | 73x+30x=350+30x |